When you are done with your homework you should be able to...

- π Find the volume of a solid of revolution using the disk method
- π Find the volume of a solid of revolution using the washer method
- π Find the volume of a solid with known cross sections

Warm-up: Sketch the region bounded by the graphs of the algebraic functions and find the area of the region.

a.
$$f(x) = -x^2 + 4x + 1$$
, $g(x) = x + 1$

b.
$$f(y) = y(2-y)$$
, $g(y) = 0$, $y = -1$, $y = 2$

THE DISK METHOD

An important application of	of the	integral is its
use in finding the		of a three-dimensional solid—one
whose	section	s are
Solids of revolution are us	sed commonly in eng	ineering and manufacturing. Some
examples are		
	, and	·
If a	in the	is
	about a	, the resulting
of revolution.	is a solid of rev o	plution , and the line is called the axis

THE DISK METHOD

To find the volume of a solid of revolution with the <u>disk method</u> use one of the following:

Horizontal Axis of Revolution

$$V = \pi \int_{a}^{b} \left[R(x) \right]^{2} dx$$

$$V = \pi \int_{c}^{d} \left[R(y) \right]^{2} dy$$

Example 1: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.

a)
$$y = 2x^2$$
, $y = 0$, $x = 2$, about the x-axis.

b) $y = 2x^2$, y = 0, x = 2, about the y-axis.

THE WASHER METHOD

The disk method can be extended to cover solids of revolution with _____

by replacing the representative _____ with a representative

THE WASHER METHOD

To find the volume of a solid of revolution with the washer method use one of the following:

Horizontal Axis of Revolution

$$V = \pi \int_{a}^{b} \left(\left\lceil R(x) \right\rceil^{2} - \left\lceil r(x) \right\rceil^{2} \right) dx$$

$$V = \pi \int_{a}^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx \qquad V = \pi \int_{c}^{d} \left(\left[R(y) \right]^{2} - \left[r(y) \right]^{2} \right) dy$$

Example 2: Find the volume of the solids generated by revolving the regions bounded by the graphs of the equations about the given line.

a)
$$y = 2x^2$$
, $y = 0$, $x = 2$, about the line $x = 6$.

b)
$$y = \cos x$$
, $y = 1$, $x = 0$, $x = \frac{\pi}{2}$ about the line $y = 2$.

SOLIDS WITH KNOWN CROSS SECTIONS

With the disk method, you can find the _______ of a solid having a ______ cross section whose area is ______.

This method can be generalized to solids of any shape, as long as you know a formula for the area of an arbitrary cross section. Some common cross sections are ______, ______, and

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area A(x) taken perpendicular to the x-axis,

$$V = \int_{a}^{b} A(x) dx$$

2. For cross sections of area A(y) taken perpendicular to the y-axis,

$$V = \int_{c}^{d} A(y) dy$$

Example 3: Find the volumes of the solids whose bases are bounded by the circle $x^2 + y^2 = 4$ with the indicated cross sections taken perpendicular to the x-axis.

a) Squares

b) Semicircles

